R/05_fault_detection.R
plot_mon.Rd
This function plots selected functions in a phase_II monitoring data set against the corresponding training data set to be compared.
plot_mon(cclist, fd_train, fd_test, plot_title = FALSE, print_id = FALSE)
A data.frame
produced by
control_charts_pca
, control_charts_sof_pc
regr_cc_fof
, or regr_cc_sof
.
An object of class mfd
containing
the training data set of the functional variables.
They are plotted in gray in the background.
An object of class mfd
containing
the phase II data set of the functional variables to be monitored.
They are coloured in black or red on the foreground.
A logical value. If TRUE
,
it prints the title with the observation name.
Default is FALSE
.
A logical value. If TRUE
, and also plot_title
is TRUE
,
it prints also the id of the observation
in the title of the ggplot.
Default is FALSE
A ggplot of the multivariate functional data.
In particular, the multivariate functional data given in
fd_train
are plotted on
the background in gray, while the multivariate functional data given in
fd_test
are
plotted on the foreground, the colour
of each curve is black or red depending on if that curve
was signal as anomalous by at least a contribution plot.
library(funcharts)
data("air")
air <- lapply(air, function(x) x[201:300, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates],
n_basis = 15,
lambda = 1e-2)
y <- rowMeans(air$NO2)
y1 <- y[1:60]
y_tuning <- y[61:90]
y2 <- y[91:100]
mfdobj_x1 <- mfdobj_x[1:60]
mfdobj_x_tuning <- mfdobj_x[61:90]
mfdobj_x2 <- mfdobj_x[91:100]
mod <- sof_pc(y1, mfdobj_x1)
cclist <- regr_cc_sof(object = mod,
y_new = y2,
mfdobj_x_new = mfdobj_x2,
y_tuning = y_tuning,
mfdobj_x_tuning = mfdobj_x_tuning,
include_covariates = TRUE)
get_ooc(cclist)
#> id T2 spe y contribution_T2_CO contribution_T2_temperature
#> 91 91 FALSE FALSE FALSE FALSE FALSE
#> 92 92 FALSE FALSE FALSE FALSE FALSE
#> 93 93 TRUE FALSE FALSE TRUE FALSE
#> 94 94 FALSE FALSE FALSE FALSE FALSE
#> 95 95 FALSE FALSE FALSE FALSE FALSE
#> 96 96 FALSE FALSE FALSE FALSE FALSE
#> 97 97 FALSE FALSE FALSE FALSE FALSE
#> 98 98 FALSE FALSE FALSE FALSE FALSE
#> 99 99 FALSE FALSE TRUE FALSE FALSE
#> 100 100 FALSE FALSE TRUE FALSE FALSE
#> contribution_spe_CO contribution_spe_temperature
#> 91 FALSE FALSE
#> 92 FALSE FALSE
#> 93 FALSE FALSE
#> 94 FALSE FALSE
#> 95 FALSE FALSE
#> 96 FALSE FALSE
#> 97 FALSE FALSE
#> 98 FALSE FALSE
#> 99 FALSE FALSE
#> 100 FALSE FALSE
cont_plot(cclist, 3)
plot_mon(cclist, fd_train = mfdobj_x1, fd_test = mfdobj_x2[3])